Entropy calculation to help understand societal change

Supervisors: Dr Alastair Buckley, Department of Physics and Astronomy | Dr Roger Doonan, Department of Archaeology

Co-supervisors: Professor Martin Mayfield, Department of Civil and Structural Engineering | Dr Iñaki Esnaola, Department of Automatic Control and Systems Engineering

The deadline to apply for this project has now passed.

If you have any enquiries about this project, please email: archaeology@sheffield.ac.uk

Project description

A missing ingredient in our understanding of human influence on global environmental change is the quantitative measure of the energy interactions of societies operating under varied technological and geographical conditions.

This project seeks to employ the archaeological and historical data for the comparative investigation of energy use in different societies. The project lies at the interfaces between physics, archaeology and ecology and it will be addressed by developing models to calculate entropy generation rates within the case study systems. Entropy generation (as opposed to energy use) allows the “quality” or “usefulness” of different energy resources to be measured. We will explore how we might calculate entropy generation in a series of sub-systems coupled with the environment with the aim of learning about the conditions of social change. A critical aspect of the study should be the development of methods and models that provide baseline data for both the critical analysis of existing studies and to inform current and emerging policy decisions about the future of our planet.

We are looking for strong computer programming and maths skills, a good grounding in science and a passionate interest in society, history, archaeology and the future of humanity

Over time, human communities have existed in a variety of social configurations ranging from localised hunter-gatherer communities to extensive imperial hierarchies and more recently as interconnected nation states. Accompanying the transitional development of human societies is the fundamental and significant reorganisation of how communities access, exploit and dissipate energy. Although energy allows human communities to sustain themselves under a myriad of cultural conditions, few studies have sought to understand social transformation in terms of the development of energy systems.

It is proposed to investigate not only details of a range of human ecologies in terms of settlement, but also in terms of wider environmental and social relations such as settlement catchment area, the proximity of key resources i.e. water, food, ores and minerals, etc..

The goal is to calculate the entropy generation rate of each of the coupled processes in a particular model social configuration. These computations will be done for each of the thermodynamic couplings within the overall system configuration and over time with steps of days, weeks and years depending on the configurations being researched. The project be divided into the following tasks:

Subject areas: Applied physics, archaeology, anthropology, sociology

Keywords: social change, energy, entropy, human impact, environment

Deadline for applications (extended): Thursday 26 May, 2016

Funding notes

This four year studentship will be fully funded at Home/EU or international rates. Support for travel and consumables (RTSG) will also be made available at standard rate of £2,627 per annum, with an additional one-off allowance of £1,000 for a computer in the first year. Students will receive an annual stipend of £17,335 in 2015/16, rising with inflation thereafter.

Application notes

Your application for this studentship should be accompanied by a CV and a 200 word supporting statement. Your statement should outline your aspirations and motivation for studying in the Grantham Centre, outlining any relevant experience. You should include this in your online application using the University of Sheffield’s online application form. Please select ‘standard PhD’, not DTC option when completing the form.

Postgraduate Online Application Form