Low Cost Internet of Things based Sensor Networks for Air Quality in Cities

Lead Supervisor: Prof Martin Mayfield, Department of Civil and Structural Engineering
Co-supervisors: Prof Lyudmila Mihaylova, Department of Automatic Controls and Systems Engineering; Prof Tony Ryan, Department of Chemistry; Dr Nate Adams, Department of Animal and Plant Sciences

Deadline: Monday 26th March 2018

Project Description
The World Health Organisation (WHO) estimated that air pollution in 2012 was responsible for 1 in 8 of the total number of deaths worldwide.

The aims of this project are to develop models and techniques that will afford significantly improved monitoring and communication of the pollution level in cities without the need to significantly invest in monitoring equipment. It will explore how NO2 relate to PM10/2.5 and visa versa and how can other indicators in cities be used to evaluate air quality.

This would afford redirecting people to areas with a reduced concentration of pollution and afford the passengers to select their best routes.

The project will test the model in Sheffield, working with local electronics company Pimoroni to develop the analytical equipment, and then test the low cost IoT network in a city in a developing country (Dar es Salaam) through contacts held by the supervisors.

An Air Quality Sensor Network (deployed as part of a separate project, The Urban Flows Observatory) will be used to support this the project. The high quality fixed sensors and mobile sensing vehicle measure NO2, CO and SO2 together with PM2.5 & PM10.  These will be used to validate date from cheap sensors for NO2, CO and SO2 air pollution concentration measuring will be installed on mobile phones. This will allow the assessment of the cheap sensor based network to assess gas and particulate readings in the city.

The project will comprise i) design, development and construction of a pollution analysis instrument ii) data analysis and visualisation, iii) development and validation of statistical models and algorithms for detection and estimation and short term prediction of air pollution concentration and the inference of particulate levels, iv) energy efficiency of the proposed approaches, iv) integration in a decision making system.

Unlike previous models which encode only data related to spatial locations, in this project we will identify and incorporate other types of data provided by “social sensors”, e.g. people equipped with mobile wearable sensors. The project will develop methods both for people-centric and environment-centric applications. The sensor node can be on a mobile app, such as a cell phone but can be also on a vehicle platform.

Subject areas: Electrical & Electronic, Applied Mathematics, Statistics, Computer Science & IT Data Analysis, Mathematics, Environmental Chemistry, Physical Chemistry, Applied Physics, Atmospheric Physics & Chemistry, Environmental Engineering

Funding notes
This four-year studentship will be fully funded at Home/EU or international rates. Support for travel and consumables (RTSG) will also be made available at standard rate of £2,627 per annum, with an additional one-off allowance of £1,000 for a computer in the first year.  Students will receive an annual stipend of £17,336.  Applications should be received and complete by Monday 26th March 2018.

What to include in the application

Your application for this studentship should be accompanied by a CV and a 200 word supporting statement. Your statement should outline your aspirations and motivation for studying in the Grantham Centre for Sustainable Futures. You should also outline any relevant experience and interests that you have in sustainability issues.

Please select ‘Standard PhD’ and the department of this project’s lead supervisor. Fill in the title of your desired project and the name(s) of the supervisors. The starting date of the PhD will be the start of the next academic year – 1 Oct 2018. The ‘Funding stage’ on the form will be ‘project studentship’.